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We investigate the local and global dynamics of two 1-Dimensional (1D) Hamiltonian lattices
whose inter-particle forces are derived from nonanalytic potentials. In particular, we study the
dynamics of a model governed by a “graphene-type” force law and one inspired by Hollomon’s
law describing “work-hardening” effects in certain elastic materials. Our main aim is to show
that, although similarities with the analytic case exist, some of the local and global stability
properties of nonanalytic potentials are very different than those encountered in systems with
polynomial interactions, as in the case of 1D Fermi–Pasta–Ulam–Tsingou (FPUT) lattices. Our
approach is to study the motion in the neighborhood of simple periodic orbits representing
continuations of normal modes of the corresponding linear system, as the number of particles N
and the total energy E are increased. We find that the graphene-type model is remarkably stable
up to escape energy levels where breakdown is expected, while the Hollomon lattice never breaks,
yet is unstable at low energies and only attains stability at energies where the harmonic force
becomes dominant. We suggest that, since our results hold for large N , it would be interesting
to study analogous phenomena in the continuum limit where 1D lattices become strings.
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1. Introduction

The dynamical behavior of N -degree of freedom
Hamiltonian systems has attracted the attention of
many researchers for nearly 70 years. Ever since the
pioneering numerical experiments of Fermi, Pasta,
Ulam and Tsingou (FPUT) in the early 1950’s
[Berman & Izrailev, 2005], and the far-reaching
implications of the Kolomogorov Arnol’d Moser
(KAM) theory [Lichtenberg & Lieberman, 1986],
extensive efforts were made to understand the
dynamics and statistics of 1-Dimensional (1D) non-
linear Hamiltonian lattices, in view of their many
applications in classical and statistical mechan-
ics [Bountis & Skokos, 2012]. Most studies so far
have focused on 1D Hamiltonian lattices with ana-
lytic potentials, such as FPUT systems with cubic
and/or quartic interparticle forces [Antonopoulos
et al., 2006], particle chains with on-site poten-
tials exhibiting localized (breather) modes [Flach &
Gorbach, 2008; Oikonomou et al., 2014], Josephson
junction arrays with sinusoidal nonlinearities [Usti-
nov et al., 1993] and discretizations of the Gross–
Pitaevski equation of Bose–Einstein condensation
[Antonopoulos et al., 2006].

In this paper, we focus on 1D Hamiltonian
N particle systems, whose potential is a nonan-
alytic function of the position coordinates. Such
systems are important for applications involving
“graphene-type” materials [Cadelano et al., 2009;
Lu & Huang, 2009; Colombo & Giordano, 2011;
Hazim et al., 2015; Wei et al., 2017a], and micro-
electrical-mechanical systems (MEMS) [Esposito
et al., 2010; Younis, 2013; Khan et al., 2017] obey-
ing Hollomon’s power-law and exhibiting “work-
hardening” properties [Wei & Liu, 2012; Wei et al.,
2017b]. As in earlier studies [Antonopoulos & Boun-
tis, 2006; Antonopoulos et al., 2006; Bountis &
Skokos, 2012], we concentrate here on the (local and
global) stability properties of certain so-called sim-
ple periodic orbits (SPOs), which represent contin-
uation of linear normal modes of the system and
are characterized by the return of all the variables
to their initial state after only one maximum and
one minimum in their oscillations.

In recent years, a number of researchers,
inspired by work presented in [Lee et al., 2008;
Cadelano et al., 2009] have attempted to model
vibrations of a lumped mass attached to a graphene
sheet using a nonlinear spring-mass equation,
which takes into account the nonlinear behavior
of the graphene by including a third-order elastic

stiffness constant and the nonlinear electrostatic
force [Hazim et al., 2015; Wei et al., 2017a]. They
thus used phase plane analysis, obtained the fixed
points and periodic solutions of the system and
studied their bifurcations as various parameters of
the problem are changed. In this paper, we con-
sider a 1D lattice of N such mass spring systems
with fixed ends and couple them to each other with
harmonic springs under nearest neighbor particle
interactions.

The experimental force-deformation relation
has been expressed as a phenomenological nonlin-
ear scalar relation between the applied stress (σ)
and the observed strain (ε), as σ = Eε+Dε2, where
E > 0 and D < 0 are, respectively, the Young mod-
ulus and an effective nonlinear (third-order) elastic
modulus of the two-dimensional carbon sheet [Lee
et al., 2008]. In its 1D form this relation becomes
σ = Eε + Dε|ε| and provides an expression for the
applied force at the tip and the tip-displacement of
the form ẍ = −x + x|x|. In our work, we consider
a 1D lattice of N such mass spring systems cou-
pled to each other by harmonic springs in a nearest
neighbor arrangement with fixed ends, as follows:

H =
N∑

j=1

1
2
mjẋ

2
j

+
N∑

j=0

[
K

2
(xj+1 −xj)2 −

D

3
|xj+1 −xj|3

]
, (1)

where D = −D > 0. Thus, with regard to this lat-
tice model, we employ in the present paper the anal-
ysis developed in [Bountis, 2006; Skokos et al., 2007;
Bountis & Skokos, 2012] to investigate the global
stability of 1D graphene-type systems by studying
two SPOs and their vicinity, in terms of (a) sta-
ble motion represented by quasiperiodic orbits, and
(b) unstable motion manifested by chaotic orbits,
where predictable behavior breaks down. Thus, we
will demonstrate that by suitably choosing parame-
ters and initial conditions, one may be able to con-
trol the system’s local and global dynamics.

In nonlinear elasticity another important prob-
lem with nonanalytic potential arises in the mod-
eling and numerical simulation of nonlinear beam
structures with applications to MEMS [Esposito
et al., 2010; Younis, 2013]. In these systems, the
nonlinear differential equations and the associated
initial/boundary value problems arise through the
so-called Hollomon’s power-law and are governed
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by nonlinear spring-mass equations of the form
mẍ = −Kx+x|x|p−2, 1 ≤ p < 2, for a single oscilla-
tor in the absence of external load. While for linear
elastic materials, the principal operator is the bi-
Laplacian, for Hollomon’s power-law materials, it
is a bi-p-Laplacian [Wei & Liu, 2012; Wei et al.,
2017b]. Here we plan to generalize these models by
considering an array of N such coupled oscillators
described by the Hamiltonian

H =
N∑

j=1

1
2
mj ẋ

2
j

+
N∑

j=0

[
K

2
(xj+1 −xj)2 +

λ

μ
|xj+1 −xj |μ

]
, (2)

governed by a potential derived from Hollomon’s
law, which characterizes a phenomenon known in
engineering as “work-hardening”. In such cases,
nonlinearity is introduced in the potential in the
form |x|μ, with 1 < μ < 2, which, for small mass dis-
placements, is more important than the harmonic
part of the potential! In fact, in the 1-degree of free-
dom case, the solutions are expressed in terms of a
generalized form of trigonometric functions [Shelup-
sky, 1959; Burgoyne, 1964].

Thus, in what follows, we shall focus on
the above two types of interactions: the so-called
graphene-type system (1) and the one based on Hol-
lomon’s power-law, characterizing materials that
exhibit work-hardening (2). We perform local sta-
bility analysis of certain SPOs for these two systems
and identify regions in the parameter plane charac-
terized by more global properties of the motion such
as “weak” or “strong” chaos [Bountis & Skokos,
2012].

We will demonstrate that these mass spring sys-
tems have remarkable stability properties, which are
strikingly different from those of analogous lattices
with integer nonlinearities of the form (xj+1 − xj)s

with s = 3, 4, . . . . More specifically, in the case
of (1) we find SPO destabilization laws for energies
per particle (E/N) that decrease as N grows with
very different exponents than in the FPUT case,
while for (2) we discover that the SPOs are unsta-
ble for small energies and stabilize at energies that
grow with increasing N , at displacements where the
harmonic interactions begin to dominate over the
anharmonic ones.

The outline of the paper is as follows: In
Sec. 2, we present our nonanalytic Hamiltonians

and discuss the two specific cases of graphene-type
and work-hardening interactions, providing theoret-
ical expressions for their periodic oscillations in the
single oscillator case. In Sec. 3, we consider the
N particle case for both models and introduce a
numerical stability criterion to identify the energy
per particle E/N that corresponds to the first sta-
bility change of two of their SPOs, as E and N
increase. In Sec. 4, we study in more detail the
global dynamics of the graphene-type model, in the
vicinity of its SPOs after their first destabilization
and use Lyapunov spectra to distinguish between
“weak” and “strong” chaos as the energy increases.
Finally, in Sec. 5, we conclude with a discussion of
the results and an outlook for future research.

2. Models and Methods

In what follows, we consider 1D lattices of N parti-
cles of mass mj coupled with nearest-neighbor inter-
actions and described by the Hamiltonian:

H =
N∑

j=1

1
2
mj ẋ

2
j

+
N∑

j=0

[
K

2
(xj+1 −xj)2 +

C

q + 1
|xj+1 −xj |q+1

]
,

(3)

with the respective equations of motion

mjẍj = K(xj−1 − 2xj + xj+1)

−C[|xj − xj−1|q sgn(xj − xj−1)

− |xj+1 − xj |q sgn(xj+1 − xj)], (4)

where

sgn(x − x0) :=
∂|x − x0|

∂x

=
x − x0

|x − x0|
=

⎧⎪⎨
⎪⎩

+1, x > x0

0, x = x0

−1, x < x0.

(5)

xj denotes the displacement of the jth particle from
its equilibrium position, ẋj is the corresponding
velocity, K is the elastic constant and C the mate-
rial stiffness. We impose fixed boundary conditions
throughout so that:

x0(t) = xN+1(t) = 0, ∀ t ∈ T ⊆ R
+. (6)
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For the graphene-type interactions we set C =
−D, D > 0 and q = 2, so that the Hamilto-
nian takes the form of Eq. (1), while for the work-
hardening interactions we have C = λ, λ > 0 and
q ∈ [0, 1) so that the Hamiltonian has the form of
Eq. (2). We note that when q ≥ 1 the discontinu-
ity in the sign function when Δxj = xj − xj−1 = 0
does not create difficulties regarding the numerical
integration since the term |xj − xj−1|q dominates.
However, when q ∈ [0, 1), which is the interval of
interest for Hollomon’s law, the sign function domi-
nates over the term |Δxj|q and creates spurious fluc-
tuations in the numerically computed total energy
value, which should be constant.

Thus, to avoid this undesired behavior in the
numerical integrations, we approximate the sign
function in (4) by sgn(x − x0) ≈ tanh[τ(x − x0)]
for a value of τ > 0 large enough (typically τ =
100). In what follows, we will assume mj = 1, for
j = 1, . . . , N and fix the value of the exponent for
the Hollomon-type interactions at q = 1

3 .

2.1. Graphene-type interactions

As explained in [Hazim et al., 2015; Wei et al.,
2017a] and described above, a meaningful way to
analyze a single graphene oscillator as a 1-degree
of freedom mass-spring system is through the
equation

mẍ = −Kx + Dx|x|, (7)

where m is the mass, K is the elastic coefficient and
D > 0 is a nonlinearity parameter. This equation is
derived from the Hamiltonian function

H =
m

2
ẋ2 +

K

2
x2 − D

3
|x|3 = E, (8)

whose potential represents a symmetric well about
x = 0, with extrema at x = ±K/D, where
the energy reaches its maximum value Hmax =
K3/6D2. Thus, setting m = K = D = 1, and vary-
ing the energy we may study the periodic motions
of the oscillator from small values E > 0 up to
E = Emax = 1/6 beyond which the motion escapes
to infinity and the mass-spring system “breaks”.

Considering (with no loss of generality) the ini-
tial condition x(0) = x0 and ẋ(0) = 0, we may
approximate the low energy oscillation by a single
harmonic term:

x(t) = A1 cos ωt. (9)

Substituting this expression into the equation of
motion (7), we find

(1 − ω2) = |A1||cos ωt|, (10)

which shows that ω < 1 as expected. In addition,
|cos ωt| is a periodic function with period π/ω and
can therefore be expanded as a Fourier series over
the interval [−π/2ω, π/2ω] as follows

|cos ωt| =
B0

2
+

∞∑
i=1

Bi cos 2iωt, (11)

with

B0 =
2ω
π

∫ π/2ω

−π/2ω
dt|cos ωt| =

4
π

,

B1 =
2ω
π

∫ π/2ω

−π/2ω
dt|cos ωt| cos 2ωt =

4
3π

, . . . .

(12)

This implies

1 − ω2 = |A1|
(

2
π

+
4
3π

cos 2ωt + · · ·
)

. (13)

Therefore, we may find the frequency of these oscil-
lations equating the constant terms

ω2 = 1 − 2|x0|
π

, (14)

setting A1 = x0. In Fig. 1(a), we plot the sin-
gle cosine of Eq. (9) (blue curve) and the numer-
ical (black dots) solution over one time period for
the initial amplitude x0 = 0.05 which corresponds
to a frequency ω2 ≈ 0.968169 and find excellent
agreement.

For oscillations at higher energies, one has to
consider higher harmonics of the Fourier series. For
instance, if we substitute into Eq. (7) the next
approximation of such a solution

x(t) = A1 cos ωt + A3 cos 3ωt, (15)

and expand it into Fourier terms

|A1 cos ωt + A3 cos 3ωt|

=
B0

2
+

∞∑
i=1

Bi cos 2iωt, (16)

we estimate the coefficients B0, B1 in terms of A1,
A3, and substitute them in the equation of motion
to obtain a nonlinear system of algebraic equations
for ω2, A1 and A3, for each initial amplitude x0.
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(a) (b)

Fig. 1. Numerical (black dots) versus analytical (blue curve) approximations of the single graphene oscillator (8) with unit
mass for (a) small (x0 = 0.05) and (b) large (x0 = 0.8) amplitudes of oscillations. In (a) we have used only the first term of
the Fourier series [see Eq. (9)] while in (b) we employed the first two terms [see Eq. (15)].

These low order approximations are quite accurate
even for x0 = 0.8 close to the separatrix, as we see in
Fig. 1(b), where ω2 ≈ 0.315843 and we compare the
analytical (blue curve) and numerical (black dots)
results for the second order approximation (15).

Proceeding now to higher dimensional gra-
phene-type models, with N = 2, 3, 4, . . . , it is easy
to see that the presence of the negative (abso-
lute) values of cubic terms in the potential will
always lead to escape at high enough energy. When
N = 2, for example, the potential has the form

plotted in Fig. 2 and the escape energy threshold is
Eesc

2 = 0.333 . . . .
It is, of course, highly desirable to estimate

the escape energy thresholds of these models for
any N . To do this, one needs to find the criti-
cal points of V (x), solving the system of nonlin-
ear algebraic equations ∇V (x) = 0N , where V (x)
represents the potential energy term in (3), with
x = (x1, x2, . . . , xN ). Then, one uses the Hessian
matrix

H(x) =
(

∂2V

∂xi∂xj

)N

i,j=1

Fig. 2. Potential of the graphene-type model for N = 2, with Eesc
2 = 0.333 . . . . The color coding indicates the depth of the

potential.
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to identify saddle points of the potential at critical
points of the Hessian with nonzero eigenvalues, at
least two of which have opposite signs. The escape
energy threshold Eesc

N is the minimum of the ener-
gies of the associated saddle points.

This is a cumbersome procedure due to the
existence of many critical points, which necessitates
that we repeatedly run suitable nonlinear zero find-
ing algorithms for a large number of initial condi-
tions. This, together with the high dimensionality of
the problem as N grows cause serious convergence
issues. We, therefore, choose for every N a restricted
range of initial conditions, find a subset of the sad-
dle points of the potential and select the one with
the lowest energy. Clearly this will most likely pro-
vide us with upper bounds of the true escape ener-
gies, and hence more sophisticated algorithms are
needed to improve the accuracy of our estimates.

In Fig. 3, we follow the above strategy and
present our approximations of the escape energy
thresholds per particle hesc

N = Eesc
N /N versus N

using a log–log plot. These results are well fitted
by a power law ∝ N−1.176, which suggests that our
rough approximations may not be too far from the
actual escape energy values as N increases.

2.2. Hollomon-type interactions

Let us now turn to the case of the Hollomon-type
1D lattice and consider a single oscillator in this
class, whose Hamiltonian has the form:

H =
m

2
ẋ2 +

K

2
x2 +

λ

1 + q
|x|1+q = E. (17)

As mentioned earlier, the exponent q associated
with Hollomon’s law satisfies 0 ≤ q < 1 and will

Fig. 3. Logarithmic plot of the obtained approximations of
the escape energy thresholds per particle hesc

N = Eesc
N /N for

the graphene-type model.

be chosen here to have the value q = 1/3. Since
λ > 0, this implies that the potential energy of the
system is everywhere positive definite and hence no
escape is possible, as its equations of motion

mẍ + Kx + λ|x|q−1x = 0, (18)

describes only bounded motions. This differential
equation cannot be solved in closed form. Thus, we
approximate its solution x(t) with a Fourier series
expansion of order n as follows:

xn(t) =
n∑

i=1

Ai cos(iωnt), (19)

where x(t) = limn→∞ xn(t) and ωn denotes the
value of ω at the nth approximation. To determine
the coefficients Ai and the oscillation frequency ωn,
we adopt the following scheme, which ensures that
the total energy E is always preserved: Multiplying
Eq. (18) with x we obtain λ|x|q+1 = −mxẍ−Kx2,
whence substituting the q-dependent term of this
equation into Eq. (17) and equating the Hamilto-
nian with E we get

E =
m

2
ẋ2 + C1x

2 + C2xẍ,

C1 ≡ K(q − 1)
2(q + 1)

, C2 ≡ − m

q + 1
. (20)

Using Eq. (19) the energy can be expressed in terms
of trigonometric functions,

E =
mω2

n

2

[
n∑

i=1

iAi sin(iωnt)

]2

+ C1

[
n∑

i=1

Ai cos(iωnt)

]2

−C2ω
2
n

[
n∑

i=1

Ai cos(iωnt)

]

×

⎡
⎣ n∑

j=1

j2Aj cos(jωnt)

⎤
⎦. (21)

Using trigonometric identities to express the
squared quantities and the product in Eq. (21) as
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single sums, we rewrite Eq. (21) in the form

E =
n∑

i=1

n∑
j=1

a
(+)
i,j cos[(i − j)ωnt]

+
n∑

i=1

n∑
j=1

a
(−)
i,j cos[(i + j)ωnt], (22)

with

a
(±)
i,j :=

1
2

(
C1 − C2ω

2
nj2 ± mω2

n

2
ij

)
AiAj . (23)

Setting x(0) = x0 =
∑n

i=1 Ai and ẋ(0) = 0, we
obtain from Eq. (22) the oscillation frequency in
terms of the Ai coefficients, as

ω2
n =

C1x
2
0 − E

C2x0

n∑
j=1

j2Aj

. (24)

Now, we rearrange all the terms in the energy
expression Eq. (22) in a way that leads to n − 1
equations determining the A1, . . . , An coefficients.
The remaining nth equation is given by the equa-
tion for x(0). This guarantees that regardless of the
order of the Fourier series the energy is always con-
served. Then, we have

E =
n−1∑
i=1

Q
(n)
i cos[(i − 1)ωnt],

Q
(n)
i := 2−δi−1,0

n−i+1∑
j=1

(a(+)
j,j+i−1 + a

(+)
j+i−1,j)

+
i−2∑
j=1

a
(−)
j,i−1−j,

(25)

where δij is the Kronecker delta function and n ≥ 1.
We thus arrive at n− 1 equations Q

(n)
1 = E,Q

(n)
2 =

0, . . . , Q(n)
n−1 = 0, and an nth one that gives Q

(n)
n :=∑n

i=1 Ai−x0 = 0. Determining thus the coefficients
{Aj}n

j=1, we substitute them back into Eq. (24) and
calculate the oscillation frequency ωn. Of course,
the more terms we consider the better will be the
approximation of ω = limn→∞ ωn.

To demonstrate graphically our solution, we set
the values K = 0.1, λ = 1.05, m = 1 and E = 1 and
plot in Fig. 4(a) the numerical solution of Eq. (18)
within a period for the position x(t) (red stars) and
the velocity ẋ(t) (blue spheres) with the initial val-
ues x(0) = x0 and ẋ(0) = 0, and q = 1/3. The
amplitude x0 is calculated for the given values of
the parameters from Eq. (17). In Fig. 4(b), we mag-
nify the region near the minimum velocity (black
spheres) and plot our approximate analytical solu-
tion for n = 3 (blue dashed line), n = 5 (green
dashed-dotted line) and n = 7 (red solid line).
Clearly, as the number of Fourier terms increases
the better becomes its approximation of the numer-
ical solution.

(a) (b)

Fig. 4. (a) Plot of the numerical solution of the position and velocity functions in Eq. (18) with respect to time for the
rational exponent q = 1/3 and (b) Fourier series expansion for increasing n regarding the velocity function (black spheres)
at the vicinity of its minimum value within a period. As expected, for higher values of n we obtain a better approximation
solution.
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Let us assume now that our N -dimensional lat-
tice possesses SPOs, which require that each mov-
ing oscillator (some will be stationary) obeys the
same differential equation. This characterizes two
types of SPO solutions that will be of central impor-
tance in the remainder of this paper. They are
continuations of the corresponding linear normal
modes of the λ = 0 case and have played a major
role in similar studies of local and global stability
in FPUT lattices [Antonopoulos & Bountis, 2006;
Antonopoulos et al., 2006; Bountis & Skokos, 2012].
Among all possible nonlinear normal modes, these
SPOs are the simplest ones, since all moving parti-
cles obey the same differential equation. Thus, they
involve the whole lattice in a uniform way and are
the easiest to study analytically and numerically.

In the next section, we apply linear stability
analysis on two such SPOs of the nonlinear lattices
described by Eq. (3) for the graphene and Hollomon
systems separately and compare the results.

3. Stability of Simple Periodic
Orbits

As was done in the past for Hamiltonians with
analytic potentials [Antonopoulos & Bountis, 2006;
Antonopoulos et al., 2006; Bountis & Skokos, 2012],
we also focus here on a pair of SPOs and investigate
their stability. They are defined as follows:

(1) SPO1 mode, N = 2k + 1, k = 1, 2, 3, . . .:

x̂2j(t) = 0, x̂2j−1(t) = −x̂2j+1(t) ≡ x̂(t),

j ∈
{

1, . . . ,
N − 1

2

}
,

where every second particle is stationary
between two particles moving in opposite direc-
tions.

(2) SPO2 mode, N = 3k + 5, k = 0, 1, 2, . . .:

x̂3j(t) = 0, x̂j(t) = −x̂j+1(t) ≡ x̂(t),

j ∈ {1, 4, 7, . . . , N − 1},

where every third particle is stationary, while
the two in between move in opposite directions.

Among the ν = 1, 2, . . . , N normal modes of the lin-
ear lattice these SPOs are continuations of the ones
with ν = (N +1)/2 and ν =2(N +1)/3, respectively.

To examine the motion in the vicinity of
these modes, we concentrate on a phase plane
(xi(t), ẋi(t)), i = 1, 2, . . . , N , where the stationary

particles are located at the origin, and plot the pro-
jections of orbits starting very close to a given SPO.
If the mode is stable, these projections will remain
very close to the SPO all time. However, at ener-
gies where the SPO has become unstable, nearby
orbits will start to move away from it, exploring a
“chaotic” domain, whose size will give us informa-
tion about more “global” properties of the motion
around the SPO.

To determine the energy values at which these
modes become unstable, we study the motion near
particles that are at rest in the exact periodic solu-
tion, e.g. the second particle for the above SPO1
and the third particle for the SPO2. Varying the
total energy, we shift these particles by a distance
|ε| � 1 and calculate their maximum displacement
from zero as time evolves. Thus, we estimate the
energy of the first destabilization of the SPO when
this displacement becomes of the order of O(5|ε|).
For example, in the case of the SPO1 mode with
N = 5, we select the initial conditions (ICs):

x1(0) = −x3(0) = x5(0) = x0,

x4(0) = 0, x2(0) = ε,
(26)

with x0 corresponding to the SPO’s ICs when the
system’s total energy is E, and study the dynamics
near this mode as E is changed. The same procedure
is applied, e.g. to the SPO2 mode with N = 8, using
the ICs:

x1(0) = x2(0) = −x4(0) = −x5(0)

= x7(0) = x8(0) = x0,

x6(0) = 0, x3(0) = ε,

(27)

choosing again x0 to correspond exactly to the
SPO2 for energy E, and investigate how things
change when E is varied.

We have checked, of course, the accuracy of
the above criterion against results obtained through
linear stability analysis, both for SPO1 and SPO2
solutions, and have obtained very similar outcomes.
This demonstrates the reliability of our criterion
and allows us to bypass the time-consuming solu-
tion of the so-called variational equations and the
computations of the monodromy matrix needed by
the linear stability analysis (for more details see
Appendix A).

3.1. Graphene-type interactions

Let us apply the numerical approach described
above to study the dynamics near the SPO1 mode of
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(a) (b) (c)

Fig. 5. Phase plots (xi(t), ẋi(t)), for i ∈ {1, 2, 3} and energy levels (a) E = 0.17, (b) E = 0.21 and (c) E = 0.22, of orbits
near the SPO1 mode of the graphene-type Hamiltonian.

our Hamiltonian (3) for q = 2, m = K = D = 1 and
C = −D describing N = 5 particles with graphene-
type interactions. In Fig. 5, we present phase space
plots (xi(t), ẋi(t)), for i ∈ {1, 2, 3} for the first three
particles of the lattice at various energy levels, for
orbits with ICs of the form of Eq. (26) with x2(0) =
0.01. Note that, at E = 0.17, the SPO1 mode is
still stable as the perturbed solution remains close
to the periodic solution at distances comparable to
the initial displacement. At E = 0.21, however, the
SPO1 has certainly turned unstable, as the per-
turbed solution is oscillating at amplitudes that are
significantly larger than the initial ones. Finally, at
E = 0.22 chaos has clearly spread over all of the
available phase space, where the oscillations of all
particles become indistinguishable.

What is remarkable here with regard to
Fig. 5(b) is that, although the corresponding SPO1
is clearly unstable, its nearby orbits remain within
a limited domain surrounding this mode, and wan-
der about it chaotically! This is highly reminiscent
of similar results obtained for the FPUT lattice in
[Antonopoulos et al., 2006]. Indeed, as in the case
of the FPUT 5 particle SPO1 mode, if we choose
initial conditions very close to the unstable periodic
orbit, at energies where it has just become unstable,
we observe that the chaotic orbits remain within
a limited region shaped as a thin “figure-8” on a
Poincaré surface of section (x1, ẋ1) taken at times
when x3 = 0, as we see in Fig. 6.

Moreover, just as in the FPUT case, starting
at points a little further away from the “figure-8”

orbit, the solutions eventually wander over a much
larger chaotic region that spreads over most of the
available phase space of the system [Antonopou-
los et al., 2006]. It is important to emphasize that
entirely similar results are obtained when we con-
sider small displacements about the SPO2 orbit
with N = 5.

Furthermore, if the motion near the unstable
SPO1 mode is chaotic, one would expect chaos
to be much “weaker” for orbits lying within the
“figure-8” than those that spread over all of phase
space. Indeed, we have confirmed these expecta-
tions by computing the corresponding Lyapunov
spectra (see Fig. 13 in Sec. 4) and verified that
these two domains have truly distinct characteris-
tics: For the “figure-8” region, a single positive Lya-
punov exponent is found and the remaining four
converge to zero, while in the case of the larger
chaotic domain, four Lyapunov exponents are pos-
itive and only one tends to zero, after sufficiently
long integration times.

Having thus tested the validity of our numer-
ical stability criterion, we now employ it to deter-
mine the first stability transitions of the SPO1 and
SPO2 orbits of the graphene-type lattice as a func-
tion of the number of particles N . Earlier stud-
ies on the FPUT lattice [Antonopoulos & Bountis,
2006] have shown that the destabilization energy
per particle hc

N = Ec
N/N goes to zero by a power

law as N increases, proportional to N−1 for the
SPO1 case and N−2 for SPO2. As it turns out,
the situation for the graphene-type lattice is quite
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Fig. 6. The “figure-8” chaotic orbit shown here arises near the SPO1 of an N = 5 graphene lattice for ICs at a distance
|ε| = 10−5 from the SPO. It clearly displays small-scale chaos, while, starting from ICs a little further away (|ε| = 10−2), the
orbits spread over much larger chaotic domains. The Poincaré surface of section (x1, ẋ1) shown here is computed at times when
x3 = 0, with total energy E = 0.21, corresponding to what is shown in the middle plot of Fig. 5. The orbits were integrated
up to t = 2.5 × 104.

different: Although the first destabilization energy,
for both modes, falls to zero following a power law
hc

N = Ec
N/N ∝ N−α, it does so with nearly the

same exponent α ≈ 1.72, as we can see in Fig. 7.

3.2. Hollomon-type interactions

Let us turn now to our nonanalytic Hamiltonian
describing Hollomon-type interactions, and apply
the stability criterion described in the previous
subsections to study its SPO1 and SPO2 modes,

as periodic solutions of (3) with m = K = 1,
q = 1

3 and C = λ = 1.04. It is important to
emphasize that, in all cases we tested, the results
described were found to be in very good agreement
with the predictions of local stability analysis (see
Appendix A).

Our aim is to determine in a similar way the
critical energy per particle hc

N = Ec
N/N at which

these fundamental modes change their stability.
Remarkably, right from the start, we encounter a
surprising result, which is contrary to all other

Fig. 7. Logarithmic plot of the obtained approximations of destabilization energies per particle hc
N = Ec

N/N for the graphene
lattice, superimposed with the power law ∝ N−1.72.
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(a) (b)

Fig. 8. Plot of the maximum oscillation amplitudes observed when applying small perturbations to the exact SPO1 solution
of: (a) a 7-particle graphene lattice and (b) a 7-particle Hollomon lattice with q = 1

3 . In (a) the destabilization at Ec
7 ≈ 0.218,

and in (b) the stabilization energy at Ec
7 ≈ 37.5 are indicated with a red line.

Hamiltonian lattices studied so far: The SPO1 and
SPO2 modes are unstable at low energies and first
become stable at energy values that increase as N
increases! This becomes evident by applying our
numerical criterion to the SPO1 mode of a N = 7
particle Hollomon lattice, see Fig. 8(b). Starting
with small displacements, we find that the oscil-
lations about this mode grow indicating instability,
until the energy reaches a value Ec

7 ≈ 37.5. For

comparison purposes we show the corresponding
stability transition for the SPO1 orbit of a N = 7
particle graphene lattice in Fig. 8(a).

One possible explanation for this behavior is
the fact that the dynamics of the Hollomon lat-
tice, for small displacements, is governed by the
terms |xj+1 − xj|q+1, which for 0 ≤ q < 1 can be
larger than the harmonic terms and may thus be
responsible for the instability of the system at low

Fig. 9. Logarithmic plot of the approximate energies per particle hc
N = Ec

N/N where the first stabilization of SPO1 and

SPO2 happens for the Hollomon lattice, showing a power law behavior of the form ∝ Nβ , with β ≈ 2.68 (dashed line).
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Fig. 10. Logarithmic plot of the obtained approximations of SPO1 stabilization energies per particle hc
N = Ec

N/N , for various
values of q ∈ {1

3 , 3
5 , 5

7} for the Hollomon lattice.

energies. As the energy grows, however, for fixed N ,
the harmonic terms in the potential become domi-
nant, which might explain why the motion becomes
stable and remains so at all energies above the sta-
bilization threshold.

Thus, our next task is to calculate the criti-
cal energy per particle hc

N = Ec
N/N at which the

first transition to stability occurs. Estimating the
stabilization energies per particle for SPO1 and
SPO2 and plotting them in a double logarithmic
scale in Fig. 9, we find that they grow monotoni-
cally with N , both following nearly equal asymp-
totic power laws of the form N2.68.

Finally, it is interesting to investigate the effect
of the exponent q = 2s−1

2s+1 , s ∈ N on the first stabi-
lization energies of the SPOs. Results for s = 1, 2, 3
are presented in Fig. 10. The curves of SPO1 stabi-
lization energies per particle hc

N for large enough N
are well fitted by power laws, so that hc

N = αNβ ⇒
hc

N ∝ Nβ. The approximation of the exponents are
β = 2.68, 5.58, 9.61 for q = 1

3 , 3
5 , 5

7 , respectively.
Clearly, for low values of N , as q → 1, the stabi-
lization energies per particle become smaller, as the
effect of the harmonic terms begins to dominate at
lower energies. However, as N increases, the behav-
ior of the system tends to coincide for all the above
choices of the exponent q.

4. Lyapunov Exponents and Global
Stability for the Graphene Model

We have been interested so far in the first
de(re)stabilization of the SPOs of our nonanalytic

models. In the case of the graphene 1D lattice,
after introducing numerical criteria to locate where
transitions happen, we noted that at energies just
above destabilization, the motion near the SPOs
does not wander over large distances in phase space,
but remains in a regime termed “weakly chaotic”
in previous works on FPUT models [Antonopoulos
et al., 2006; Bountis & Skokos, 2012]. It is only when
we start at further distances from the SPO that
the orbits begin to wander over a wider domain of
phase space, exhibiting what we might call “strong
chaos”.

In previous works [Antonopoulos et al., 2006;
Bountis & Skokos, 2012], a clear distinction was
made between “weak” and “strong” chaos by study-
ing their spectra of Lyapunov exponents (LEs)
which differ significantly. Thus, in this section, we
perform a similar investigation to reveal the global
dynamical properties of the SPOs of the graphene-
type Hamiltonian studied in Sec. 3.1 just after their
first destabilization.

As is well-known, the Lyapunov spectrum for
an orbit of an N -degree of freedom autonomous
Hamiltonian system consists of 2N LEs λ(k), k =
1, 2, . . . , 2N , which measure the mean exponential
rate of divergence (or convergence) of orbits in
the immediate vicinity of the studied solution (see
[Benettin et al., 1976; Benettin et al., 1980a, 1980b;
Skokos, 2010; Pikovski & Politi, 2016] and refer-
ences therein). The LEs come in pairs of opposite
sign values

λ(k) = −λ(2N−k+1), k = 1, 2, . . . , 2N, (28)
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so that
∑2N

k=1 λ(k) = 0, with the largest N LEs
ordered as

λ(1) ≥ λ(2) ≥ · · · ≥ λ(N−1) ≥ λ(N) = 0. (29)

The studied orbit is said to be chaotic if at least one
of its LEs is positive, which means that the maxi-
mum Lyapunov exponent (MLE) λ(1) > 0. On the
other hand, if λ(1) = 0 the orbit is said to be regular.
If, besides the MLE, more exponents are positive
λ(k) > 0, k = 2, 3, . . . , k� < N , then it follows
that there are k� directions (in an orthogonal refer-
ence frame moving with the orbit), along which the
motion is exponentially unstable. Thus, one might
argue that the higher the k� the “more chaotic” is
a given orbit, as more directions exist along which
nearby solutions can exponentially deviate away
from it.

The values λ(k) of the LEs are obtained as the
time limits

λ(k) = lim
t→∞Λ(k), (30)

of appropriately computed quantities Λ(k), usually
refereed to as the finite time LEs (ftLEs). These
quantities can, for example, be evaluated by the so-
called “standard method” (see e.g. [Benettin et al.,
1980b; Skokos, 2010]). Typically this computation
is done through the numerical solution of the so-
called variational equations (see Appendix A for
more details), which govern the time evolution of
small perturbations from the studied orbit. A draw-
back of this approach, however, is that it requires
the Hamiltonian function to be continuous, and at

least twice differentiable, which is not the case for
the Hamiltonians considered in this study. Thus, we
employ the so-called two-particle method [Benettin
et al., 1976; Mei & Huang, 2018], which is based
on the simultaneous evolution of the studied orbit,
along with several ones close by.

For the numerical computation of the LEs,
we evolve all required orbits by implementing
the SABA2 symplectic integrator (SI) of order 2
[Laskar & Robutel, 2001]. Given a particular orbit,
with ICs for x and ẋ at t = 0 denoted by X(0),
we choose an appropriate number of nearby orbits,
X̃(k)(0) at distance d

(k)
0 = ‖X(0) − X̃(k)(0)‖ ≈

10−8, to keep the magnitude of the deviation vector
small and ensure the accurate evaluation of the LEs
[Mei & Huang, 2018]. The phase space coordinates
of these nearby orbits are randomly chosen from a
uniform distribution. All orbits are integrated up to
the final time t = 105 with an integration time step
τ = 5 × 10−4, which keeps the value of the relative
energy error

Er(t) =
∣∣∣∣H(t) −H(0)

H(0)

∣∣∣∣, (31)

smaller than 10−8.
The computation of the MLE offers an alter-

native way to investigate the stability changes of
SPOs and corroborate the results in Sec. 3 (e.g.
Figs. 7 and 9), as λ(1) > 0 (λ(1) = 0) corresponds to
an unstable (stable) periodic orbit. Typical exam-
ples of these behaviors are shown in Fig. 11 where
we present the ftMLE evolution for the SPO1 of

(a) (b)

Fig. 11. Time evolution (in log–log scale) of the ftMLE Λ(1)(t) of the SPO1 with energy (a) E = 0.1305 and (b) E = 0.2130,
respectively below and above the orbit’s first destabilization energy Ec

5 ≈ 0.21, for the Hamiltonian describing graphene-type
interactions. In both panels, the dashed straight line corresponds to a function ∝ t−1. The insets show the time evolution of
the relative energy error Er(t) of Eq. (31).
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the graphene Hamiltonian model with N = 5 at
energies E = 0.1305 [Fig. 11(a)] and E = 0.2130
[Fig. 11(b)] respectively below and above the energy
Ec

5 ≈ 0.21 of the SPO’s first destabilization. In
Fig. 11(a) we see that eventually Λ(1) ∝ 1/t, which
is the typical asymptotic evolution of the ftMLE for
regular orbits (see e.g. [Skokos, 2010]), so that in the
large time limit λ(1) = 0. This behavior clearly indi-
cates that the orbit is stable. On the other hand,
for E = 0.2130 [Fig. 11(b)] the ftMLE converges
towards a fixed positive value, which at time t = 105

is λ(1) ≈ 0.014. This behavior suggests that the
SPO1 is unstable.

Both results are in accordance with the classifi-
cation of the SPO1 orbits presented in Sec. 3. Note
that for both orbits of Fig. 11 the energy is con-
served to very good accuracy as Er � 10−8 up to
t = 105 [see insets of Figs. 11(a) and 11(b)]. Based
on these results, as well as similar computations per-
formed for other N values (also for the Hollomon-
type lattice, not presented here), we set Λ(1) = 10−4

as an empirical threshold value of the ftMLE for
discriminating between regular (Λ(1) < 10−4) and
chaotic (Λ(1) ≥ 10−4) behaviors for orbits evolved
up to t = 105. Using this criterion, we were able
to verify the validity of the power laws shown in
Figs. 7 and 9.

In general, the majority of orbits in the vicinity
of a stable SPO are regular. Hence, the computa-
tion of their MLE allows us to estimate the “size” of
regions of regular behavior around a stable periodic

orbit, and find how it varies as the system’s energy
and dimensionality change. Thus, to apply this to a
stable SPO we consider orbits whose ICs are located
further and further away in phase space from the
SPO (the distance d between the two ICs is com-
puted as the usual Euclidean distance of points in
multidimensional spaces) and determine their regu-
lar or chaotic nature. Then, the width of the regular
region is quantified by the largest d value (denoted
by Dm) for which the nearby orbit is regular.

In Fig. 12, we present results for the Dm of the
regular region around an SPO1 of the Hamiltonian
describing graphene-type interactions. Obviously in
multidimensional spaces there are many directions
along which one can depart from the SPO. In par-
ticular, in Fig. 12 we choose two such directions
described by two different types of ICs in the neigh-
borhood of the SPO1 orbit. For the first type (IC1)
we perturb the positions of only the fixed parti-
cles by the same amount, attributing to each one of
these displacements a random sign, appropriately
adjusting the position of the first particle in order
to achieve the desired energy value. For the sec-
ond approach (IC2), we perturb the momenta of all
particles, in the way described above, also correct-
ing the position of the first particle to achieve the
appropriate energy.

In Fig. 12(a), we show the dependence of Dm

on the system’s energy density for the SPO1 with
N = 5 when the IC1 (blue curve) and the IC2 (green
curve) are used. Both approaches produce values of

(a) (b)

Fig. 12. Dependence of the “size” Dm of the regular region around the stable SPO1 of the graphene-type Hamiltonian on
(a) the system’s energy density hN for N = 5 and (b) the number of degrees of freedom N for hN = 0.0039. In each panel
two types of ICs are considered: IC1 (blue curves) and IC2 (green curves) [see text for details]. The red dashed line in (a)
indicates the energy density hc

N = 0.042 of the first SPO1 destabilization.
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Fig. 13. The spectrum of the averaged (over the final stage

of their numerical evolution) LEs Λ(k), k = 1, 2, 3, 4, 5, of
the “figure-8” (red curve) and the large scale chaos (gray
curve) orbits of Fig. 6, having respectively initial phase space
distances d = 10−5 and d = 10−2 from the SPO1. The dashed
horizontal line represents the level above which we consider
a LE to be strongly positive. The error bars indicate one
standard deviation.

Dm of the same order of magnitude (Dm ≈ 10−1),
with IC1 giving slightly higher results. Although
in both cases the Dm curves are not smooth, a
clear decreasing tendency of Dm for increasing hN

values is visible, with Dm vanishing, as expected,
for hN = 0.042 [red dashed line in Fig. 12(a)] which
corresponds to the energy density of the first desta-
bilization of SPO1. In Fig. 12(b), we depict the
dependence of Dm on N for a fixed value of the

energy density, namely hN = 0.0039. A decrease
of Dm for growing N values is observed for both
types of ICs, with Dm vanishing at N = 39, as
the energy density of the first destabilization of the
SPO1 becomes smaller than hN = 0.0039.

Let us now study the properties of the spec-
trum of LEs to investigate the onset of large scale
(or “strong”) chaos in the 1D graphene model. We
present results for this model as our numerical com-
putations proved to be more accurate and stable for
it, but similar behaviors were also observed for the
Hollomon-type interaction model.

We start by computing the spectrum of LEs
for the two chaotic orbits depicted in Fig. 6, the
weakly chaotic one, with ICs given by Eq. (26),
whose phase space distance from the unstable SPO1
is d = ε = 10−5, along with the orbit resulting in
large scale chaos with d = 10−2. The LEs, which are
shown in Fig. 13, were obtained by computations
up to t = 105 and by averaging the data during the
last 103 time units of the evolution. The error bars
in Fig. 14 (actually only one is clearly visible) cor-
respond to one standard deviation of this process.
From the results of this figure we see that for the
weakly chaotic orbit located closer to the SPO1 (red
curve), only the MLE Λ(1) is practically positive
(Λ(1) > 10−4). On the other hand, the chaotic orbit
located further away from the SPO1 (gray curve in
Fig. 14), which covers a larger phase space domain
in Fig. 6, has four positive LEs (as the fifth should
be by default zero; see for example [Skokos, 2010]).

(a) (b)

Fig. 14. The spectrum of the averaged (over the final stage of their numerical evolution) LEs Λ(k), k = 1, 2, . . . , N , of orbits
in the neighborhood of the unstable (a) SPO1 and (b) SPO2, for the graphene Hamiltonian with N = 17 and for various
energy levels E = Ec

17 +ΔE. Ec
17 = 0.18765 is the energy of the first destabilization of both SPOs. The dashed horizontal line

in both panels represents the level above which we consider a LE to be strongly positive. The error bars indicate one standard
deviation.
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In order to investigate further the chaoticity of
orbits in the neighborhood of unstable SPOs we
consider the particular case of N = 17 for which
the energy of first destabilization for both the SPO1
and the SPO2 orbits is Ec

17 ≈ 0.18765. Moving
to higher energies, we explore the neighborhood
of both unstable SPOs. In particular, we set the
energy to be E = Ec

17 + ΔE (ΔE > 0) and con-
sider orbits starting in the immediate vicinity of
the SPOs. The initial conditions for these orbits
are chosen so that their phase space distances from
the SPOs are d ≈ 10−2. This is achieved by start-
ing with the ICs of the SPO, perturbing the posi-
tions of every fixed particle by the same small value
and appropriately changing the position of the first
oscillator to retain the specific energy value.

The results of our numerical simulations are
depicted in Fig. 14 where we plot the spectra of LEs
for various energy values for orbits in the neighbor-
hood of the unstable SPO1 [Fig. 14(a)] and SPO2
[Fig. 14(b)]. In Fig. 14, we clearly see that close to
the destabilization energy, e.g. for ΔE = 0.0035 in
Fig. 14(a) (SPO1) and ΔE = 0.0061 in Fig. 14(b)
(SPO2), small scale (“weak”) chaos occurs, charac-
terized by only the MLE being practically positive
(Λ(1) > 10−4). We note that for these two cases
the computed spectrum of LEs in not constantly
decreasing, as Eq. (29) indicates. This is due to
well-known practical limitations of the two-particle
method in accurately computing chaos indices, like
the LEs, for very weak chaotic behaviors [Mei &
Huang, 2018]. As the energy E increases, more LEs
become larger than 10−4 indicating the onset of
“strong” chaos in the neighborhood of both SPOs.
Thus, we conclude from these results that in this
case “strong” chaos is present for ΔE � 0.004 in
the case of SPO1 and ΔE � 0.015 for the SPO2
orbit.

5. Discussion

In this work, we have studied two Hamiltonian sys-
tems consisting of N particle systems in one dimen-
sion, whose interaction potential includes terms
that are nonanalytic functions of the position coor-
dinates. The first one concerns “graphene-type”
materials and the second MEMS satisfying Hol-
lomon’s power-law of “work-hardening”. Our main
purpose was to study their dynamics concentrat-
ing on the stability properties of two SPOs, which
are nonlinear continuations of the corresponding

linear normal modes of the system. Furthermore,
we wished to compare these two systems with what
is known in the literature for FPUT type lat-
tices, whose (analytic) potentials consist of quartic
nearest neighbor interactions added to the harmonic
ones.

The two SPOs we chose to study are the
ones that were also analyzed for FPUT systems
in [Antonopoulos & Bountis, 2006; Antonopoulos
et al., 2006; Bountis & Skokos, 2012]: The SPO1
periodic solution, where every other particle is fixed
while the ones about it perform the same oscil-
lation x̂1(t) in opposite directions, and the SPO2
solution, where between two stationary ones there
are two moving out of phase with respect to each
other, with the same x̂2(t). These are continuations
of the (N+1)/2 and 2(N+1)/3 linear normal modes
respectively and are distinguished by the fact that
they are very easy to find: All one has to do is solve
a single, second order nonlinear ODE for x̂1(t) (or
x̂2(t)). What is particularly interesting is that these
two SPOs, although quite different from each other,
share a lot of common dynamical properties.

In the case of the graphene-type lattice they
are stable at low energies and experience a first
destabilization at energies per particle Ec

N/N that
decrease, as N increases, by power laws with nearly
equal exponents, i.e. ∝ N−1.72. This is quite dif-
ferent than the FPUT 1D lattices, for which this
decay is ∝ N−1 for the SPO1 solution and ∝ N−2

for the SPO2. On the other hand, the corresponding
results for the Hollomon lattice are strikingly dis-
tinct: First of all, both SPO1 and SPO2 are unsta-
ble at low energies and first stabilize along curves of
the form Ec

N/N ∝ N2.68! This might be explained
by the fact that the Hollomon term in the poten-
tial has a power smaller than 2 and is dominant for
small energies, while for higher energies the har-
monic terms apparently become more important
and dominate the dynamics.

So much for local stability. Studying what hap-
pens near the SPOs of the graphene model imme-
diately after they become unstable, we have discov-
ered (just as in the case of FPUT systems) that
chaotic orbits do not immediately spread over large
domains in phase space, but remain for long times
close to the SPO exhibiting what one might call
“weak” chaos. For larger displacements, however,
(or longer integration times) nearby orbits eventu-
ally escape to much larger phase space domains of
“strong” chaos.

2030047-16



December 5, 2020 7:48 WSPC/S0218-1274 2030047

1-Dimensional Hamiltonian Lattices with Nonanalytic Potentials

To justify our heuristic terminology of “weak”
versus “strong” chaos in the graphene model, we
analyzed the spectra of Lyapunov exponents in dif-
ferent domains and found, just as in the FPUT case,
that when the motion remains close to an SPO that
has just turned unstable only the largest exponent
converges to a positive number while the smaller
ones continue to decrease. However, as the motion
begins to spread to larger distances, all LEs begin to
attain values comparable to the maximal exponent.

Motivated by these results, we believe that a
number of interesting directions remain open for
future work: First of all, more SPOs need to be
studied to claim that our findings about SPO1 and
SPO2 have more general implications concerning
the dynamics of the lattices studied here. This is, of
course, quite challenging since locating SPOs of ND
Hamiltonians is not an easy task. One might start
from SPOs whose equations reduce to two coupled
second order ODEs and apply methods for find-
ing low order periodic orbits of 2-degree of freedom
Hamiltonian systems.

In the nearest-neighbor case, it would be inter-
esting to derive PDEs in the continuum limit and
study analogous phenomena when these lattices
are viewed as strings. Another approach would
be to allow for the presence of long range inter-
actions (LRI), including in the potential interac-
tions between the nth and mth particles multi-
plied by |m − n|−α, where 0 ≤ α < ∞ (α = ∞
denotes the nearest neighbor case). Recent findings
in FPUT systems show that LRI can have a sta-
bilizing effect on the dynamics of 1D Hamiltonian
lattices [Christodoulidi et al., 2014; Christodoulidi
et al., 2016]. What happens to the lattices studied
in this paper under LRI?

Finally, one could investigate the occurrence of
supratransmission, which has so far been observed
only in Hamiltonians with analytic potentials (see
e.g. [Maćıas D́ıaz, 2017; Maćıas D́ıaz & Boun-
tis, 2018]). Supratransmission refers to the sudden
surge of energy through a 1D lattice fixed at one
end and driven at the other by a periodic force of
the form A sin Ωt. It has been found to arise when
the amplitude of the forcing exceeds certain thresh-
old A > Ac, provided Ω and its harmonics lie out-
side the phonon band of the harmonic part of the
lattice. It would, therefore, be quite important to
find out whether and how similar supratransmis-
sion phenomena are manifested in the nonanalytic
systems studied in the present paper.

Acknowledgments

We acknowledge useful discussions with Professor
Christos Spitas and partial support for this work
by funds from the Ministry of Education and Sci-
ence of Kazakhstan, in the context of the project
VSAT (2018–2020) and the Nazarbayev University
internal grant HYST (2018–2021). T. Oikonomou
acknowledges the FDCR Grant (090118FD5350)
and the state-targeted program “Center of Excel-
lence for Fundamental and Applied Physics”
(BR05236454) by the Ministry of Education and
Science of the Republic of Kazakhstan. B. Many
Manda and Ch. Skokos acknowledge support from
the National Research Foundation of South Africa
and thank the High Performance Computing facil-
ity of the University of Cape Town and the Center
for High Performance Computing of South Africa
for providing their computational resources.

References

Antonopoulos, C. & Bountis, T. [2006] “Stability of sim-
ple periodic orbits and chaos in a Fermi–Pasta–Ulam
lattice,” Phys. Rev. E 73, 056206.

Antonopoulos, C., Bountis, T. & Skokos, Ch. [2006]
“Chaotic dynamics of N-degree of freedom Hamil-
tonian systems,” Int. J. Bifurcation and Chaos 16,
1777–1793.

Benettin, G., Galgani, L. & Strelcyn, J.-M. [1976] “Kol-
mogorov entropy and numerical experiments,” Phys.
Rev. A 14, 2338–2345.

Benettin, G., Galgani, L., Giorgilli, A. & Strelcyn, J.-
M. [1980a] “Lyapunov characteristic exponents for
smooth dynamical systems and for Hamiltonian sys-
tems; a method for computing all of them. Part 1:
Theory,” Meccanica 15, 9–20.

Benettin, G., Galgani, L., Giorgilli, A. & Strelcyn, J.-
M. [1980b] “Lyapunov characteristic exponents for
smooth dynamical systems and for Hamiltonian sys-
tems; a method for computing all of them. Part 2:
Numerical application,” Meccanica 15, 21–30.

Berman, G. P. & Izrailev, F. [2005] “The Fermi–Pasta–
Ulam problem: Fifty years of progress,” Chaos 15,
015104.

Bountis, T. [2006] “Stability of motion: From Lyapunov
to N -degree of freedom Hamiltonian systems,” Non-
lin. Phen. Compl. Syst. 9, 209–239.

Bountis, T. & Skokos, H. [2012] Complex Hamiltonian
Dynamics, Springer Series in Complexity.

Burgoyne, F. D. [1964] “Generalized trigonometric func-
tions,” Math. Comput. 18, 314–316.

Cadelano, E., Palla, P. L., Giordano, S. & Colombo, L.
[2009] “Nonlinear elasticity of monolayer graphene,”
Phys. Rev. Lett. 102, 235502.

2030047-17



December 5, 2020 7:48 WSPC/S0218-1274 2030047

A. Bountis et al.

Christodoulidi, H., Tsallis, C. & Bountis, T. [2014]
“Fermi–Pasta–Ulam model with long range interac-
tions: Dynamics and thermostatistics,” Eur. Phys.
Lett. 108, 40006.

Christodoulidi, H., Bountis, T., Tsallis, C. & Drossos,
L. [2016] “Dynamics and statistics of the
Fermi–Pasta–Ulam β-model with different ranges of
particle interactions,” J. Statist. Mech. 12, 123206.

Colombo, L. & Giordano, S. [2011] “Nonlinear elasticity
in nanostructured materials,” Rep. Progr. Phys. 74,
116501.

Esposito, P., Ghoussoub, N. & Guo, Y. [2010] “Math-
ematical analysis of partial differential equations
modeling electrostatic MEMS,” AMS/Courant Instit.
Math. Sci., New York.

Flach, S. & Gorbach, V. [2008] “Discrete breathers —
Advances in theory and applications,” Phys. Rep.
467, 1–116.

Hazim, H., Wei, D., Elgindi, M. & Soukiassian, Y. [2015]
“A lumped-parameter model for nonlinear waves in
graphene,” World J. Engin. Technol. 3, 57–69.

Khan, Z. H., Kermany, A. R., Öchsner, A. & Iacopi,
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Appendix A

Linear Stability Analysis

As is well-known, the standard approach to study
the stability of periodic orbits of 1D N -degree of
freedom Hamiltonian lattices is through the method
of variational equations and monodromy matrix
analysis of linear stability theory (see e.g. [Skokos,
2001; Bountis & Skokos, 2012]). For completeness,
we outline this approach in the present Appendix,
as we applied it to the SPO1 and SPO2 solutions
of the Hollomon lattice of Sec. 3.2 to compare with
the predictions of our numerical criterion. Entirely
analogous results were obtained for the SPO1 and
SPO2 of the graphene lattice. We were thus able
to check that the analytical estimates regarding
de(re)-stabilization energies, for both lattices, are
very close to what one finds using the numerical
criterion of Sec. 3. Thus, for most of the results
presented in this paper, we preferred to use the lat-
ter, as it is computationally much faster than linear
stability analysis.

Let us recall first that to obtain numerically
stable results when integrating Eq. (4), we need to
approximate the sign function by sgn(x − x0) ≈
tanh[τ(x − x0)] for a value of τ > 0 large enough

2030047-18
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(τ = 100 suffices). In that case, Eq. (4) takes the
form

mjẍj = K(xj−1 − 2xj + xj+1)

−C[|xj − xj−1|q tanh[τ(xj − xj−1)]

− |xj+1 − xj |q tanh[τ(xj+1 − xj)]].
(A.1)

Indeed, the equations of motion in Eqs. (4)
and (A.1) are found to match as τ → ∞ due to
limτ→∞ tanh[τ(x − x0)] = sgn(x − x0).

Let us now express the solution of Eq. (A.1)
as a small perturbation from a T -periodic SPO
under study, i.e. xj = x̂j + εj , where εj denotes a
small variation of the solution at the jth site. Then,

writing Eqs. (A.1) in the general form mjẍj = Gj ,
we obtain the (linear) so-called variational equa-
tions expressed in terms of the elements of the Jaco-
bian matrix of G as follows:

ε̈j =
∂Gj

∂xj−1
εj−1 +

∂Gj

∂xj
εj +

∂Gj

∂xj+1
εj+1,

j = 1, . . . , N, ε0 = εN+1 = 0, (A.2)

about our T -periodic solution, omitting higher
order terms in εj , which are considered negligi-
ble [Antonopoulos & Bountis, 2006; Antonopoulos
et al., 2006; Bountis & Skokos, 2012]. In the present
case, the elements of the Jacobian matrix appearing
in Eq. (A.2) are given by

∂Gj

∂x	
(x = x̂) = k(δ	,j−1 − 2δ	,j + δ	,j+1)

−λ

{
|x̂j − x̂j−1|q(δ	,j − δ	,j−1)

(
q
tanh[τ(x̂j − x̂j−1)]

x̂j − x̂j−1
+

τ

cosh2[τ(x̂j − x̂j−1)]

)

− |x̂j+1 − x̂j|q(δ	,j+1 − δ	,j)
(

q
tanh[τ(x̂j+1 − x̂j)]

x̂j+1 − x̂j
+

τ

cosh2[τ(x̂j+1 − x̂j)]

)}
, (A.3)

where � = 1, . . . , N and δ	,j is the Kronecker delta
function. Solving numerically Eq. (A.2) over one
period of the oscillations, T , we obtain a matrix
connecting the variations at t = 0 with those at
t = T called the monodromy matrix M(T ) of the
periodic solution. The elements of this matrix are
determined as follows: We first rewrite Eq. (A.2),
ε̈j = Fj(x̂(t), ε(t)), as a system of two first order
differential equations of the form ε̇j = ηj , η̇j = Fj ,
and express the obtained system in matrix form,
as Żi(t) = Mij(t)Zj(t), where Mij(t) are the ele-
ments of the 2N × 2N monodromy matrix, while
Zj are the elements of the vector Z2N = (ε1, η1, . . . ,
εN , ηN )T. The resulting initial value problem is
thus given as Z(1)

2N (0) = (1, 0, . . . , 0)T2N , Z(2)
2N (0) =

(0, 1, . . . , 0)T2N , . . . ,Z(2N)
2N (0) = (0, 0, . . . , 1)T2N . To

solve the above matrix differential equation prob-
lem, we need at each integration step the values

of x̂j(t), which are obtained by solving simulta-
neously Eq. (4), or its approximation Eq. (A.1).
After integration over a single period T , the ele-
ments of the monodromy matrix are calculated as
Mij(T ) = Z(j)

2N (T ).
As is well-known [Skokos, 2001; Bountis &

Skokos, 2012], the eigenvalues of this matrix allow
us to determine the local stability properties of the
SPO under investigation, as follows: Since the orig-
inal system is Hamiltonian, M(T ) is a symplectic
matrix with determinant +1 (or −1). Its eigenval-
ues arise in complex conjugate pairs and the SPO
is linearly stable if all eigenvalues lie on the unit
circle. However, as the total energy of the system
E varies, some of the eigenvalues split off the unit
circle and the SPO becomes unstable.
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